ยินดีต้อนรับสู่เว็บบล็อก รายวิชาคณิตศาสตร์ ได้เลยจ้ะ

วันพฤหัสบดีที่ 18 กุมภาพันธ์ พ.ศ. 2559

อัตราส่วนตรีโกณมิติ

คำว่า “ตรีโกณมิติ” ตรงกับคำ ภาษาอังกฤษ “Trigonometry” หมายถึง การวัด 
รูปสามเหลี่ยมได้มีการนำความรู้วิชาตรีโกณมิติไปใช้ในการหาระยะทาง พื้นที่ 
มุม และทิศทางที่ยากแก่การวัดโดยตรง เช่น การหาความสูงของภูเขา 
การหาความกว้างของแม่น้ำ เป็นต้น จากรูปสามเหลี่ยมมุมฉาก ABC ที่มีมุม C เป็นมุมฉาก

เมื่อพิจารณามุม A
BC เรียกว่า ด้านตรงข้ามมุม A ยาว a หน่วย
CA เรียกว่า ด้านประชิดมุม  A ยาว b หน่วย
AB เรียกว่า ด้านตรงข้ามมุมฉาก ยาว c หน่วย

เมื่อพิจารณามุม B
AC เรียกว่า ด้านตรงข้ามมุม B ยาว b หน่วย
CB เรียกว่า ด้านประชิดมุม B ยาว a หน่วย
BA เรียกว่า ด้านตรงข้ามมุมฉาก ยาว c หน่วย  อ่านเพิ่มเติม

เพิ่มคำอธิบายภาพ

วันพุธที่ 3 กุมภาพันธ์ พ.ศ. 2559

ฟังก์ชั่น

ความหมายของฟังก์ชัน จากความรู้เรื่องความสัมพันธ์ที่เรียนมาแล้ว พิจารณาความสัมพันธ์ต่อไปนี้
1. กำหนดให้
r1 = { (0,1), (1,2), (2,3), (1,1), (0,4) }
r2 = { (0,3), (1,1), (2,1), (3,4) }
ถ้าต้องการแสดงว่าสมาชิกใดของโดเมนมีความสัมพันธ์กับสมาชิกใดของเรนจ์อาจจะใช้วิธี

เขียนลูกศรโยงเรียกว่าการจับคู่ เช่นจากความสัมพันธ์ r1 และ r2เขียนแผนภาพแสดงการจับคู่ได้ดังนี้ อ่านเพิ่มเติม

จำนวนจริง

• ระบบจำนวนจริง

จากแผนผังแสดงความสัมพันธ์ของจำนวนข้างต้น จะพบว่า ระบบจำนวนจริง จะประกอบไปด้วย
1. จำนวนอตรรกยะ หมายถึง จำนวนที่ไม่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็ม หรือทศนิยมซ้ำได้ ตัวอย่างเช่น √2 , √3, √5, -√2, - √3,  หรือ ¶ ซึ่งมีค่า 3.14159265...
2. จำนวนตรรกยะ หมายถึง จำนวนที่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็มหรือทศนิยมซ้ำได้  อ่านเพิ่มเติม
การให้เหตุผล
การให้เหตุผลแบ่งได้ 2 แบบดังนี้
 1. การให้เหตุผลแบบอุปนัย
2. การให้เหตุผลแบบนิรนัย
1. การให้เหตุผลแบบอุปนัย  การให้เหตุผลแบบอุปนัย  เป็นการให้เหตุผลโดยอาศัยข้อสังเกตหรือผลการทดลองจากหลาย ๆ ตัวอย่าง มาสรุปเป็นข้อตกลง หรือข้อคาดเดาทั่วไป  หรือคำพยากรณ์ ซึ่งจะเห็นว่าการจะนำเอาข้อสังเกต   หรือผลการทดลองจากบางหน่วยมาสนับสนุนให้ได้ข้อตกลง หรือ ข้อความทั่วไปซึ่งกินความถึงทุกหน่วย ย่อมไม่สมเหตุสมผล  เพราะเป็นการอนุมานเกินสิ่งที่กำหนดให้ ซึ่งหมายความว่า  การให้เหตุผลแบบอุปนัยจะต้องมีกฎของความสมเหตุสมผลเฉพาะของตนเอง  นั่นคือ  จะต้องมีข้อสังเกต หรือผลการทดลอง หรือ มีประสบการณ์ที่มากมายพอที่จะปักใจเชื่อได้  แต่ก็ยังไม่สามารถแน่ใจในผลสรุปได้เต็มที่ เหมือนกับการให้เหตุผลแบบนิรนัย  ดังนั้นจึงกล่าวได้ว่าการให้เหตุผลแบบนิรนัยจะให้ความแน่นอน แต่การให้เหตุผลแบบอุปนัย  จะให้ความน่าจะเป็น
        ตัวอย่างการให้เหตุผลแบบอุปนัย  เช่น  เราเคยเห็นว่ามีปลาจำนวนมากที่ออกลูกเป็นไข่เราจึงอนุมานว่า "ปลาทุกชนิดออกลูกเป็นไข่"  ซึ่งกรณีนี้ถือว่าไม่สมเหตุสมผล  ทั้งนี้เพราะ ข้อสังเกต  หรือ  ตัวอย่างที่พบยังไม่มากพอที่จะสรุป  เพราะโดยข้อเท็จจริงแล้วมีปลาบางชนิดที่ออกลูกเป็นตัว  เช่น  ปลาหางนกยูง เป็นต้น

       โดยทั่วไปการให้เหตุผลแบบอุปนัยนี้  มักนิยมใช้ในการศึกษาค้นคว้าคุณสมบัติต่าง ๆ ทางด้านวิทยาศาสตร์  เช่น ข้อสรุปที่ว่า  สารสกัดจากสะเดาสามารถใช้เป็นยากำจัดศัตรูพืชได้ ซึ่งข้อสรุปดังกล่าวมาจากการทำการทดลอง ซ้ำ ๆ กันหลาย ๆ ครั้ง  แล้วได้ผลการทดลองที่ตรงกันหรือในทางคณิตศาสตร์จะใช้การให้เหตุผลแบบอุปนัย  ในการสร้างสัจพจน์ เช่น  เมื่อเราทดลองลากเส้นตรงสองเส้นให้ตัดกัน  เราก็พบว่าเส้นตรงสองเส้นจะตัดกันเพียงจุด ๆ เดียวเท่านั้น  ไม่ว่าจะทดลองลากกี่ครั้งก็ตาม  เราก็อนุมานว่า    "เส้นตรงสองเส้นตัดกันเพียงจุด ๆ เดียวเท่านั้น" อ่านเพิ่มเติม
                                            


วันจันทร์ที่ 1 กุมภาพันธ์ พ.ศ. 2559

เซต

เซต เป็นคำที่ไม่ให้ให้นิยาม (Undefined Term) เรามักใช้เซตแทนสิ่งที่อยู่ร่วมกัน ซึ่งหมายถึงกลุ่มของสิ่งต่างๆ ที่เราสามารถกำหนดสมาชิกได้ชัดเจน (Well-Defined) หรือก็คือความหมายของเซตนั่นเอง
การเขียนเซต
1. เขียนแบบแจกแจงสมาชิก (Tabular Form) เป็นการเขียนเซตโดยบรรจุสมาชิกทั้งหมดของเซตลงในวงเล็บปีกกา และระหว่างสมาชิกแต่ละตัวคั่นด้วยเครื่องหมายจุลภาค (,)
เช่น {A,B,C} หรือ {1, 2, 3} เป็นต้น
(หมายเหตุ: ถ้าเซตมีจำนวนสมาชิกมากมาย เราใช้ “…” แทนสมาชิกที่เหลือ)
2. เขียนสับเซตแบบบอกเงื่อนไขของสมาชิกในสับเซต (Set builder form)
มีหลักการ คือ แทนสมาชิกของเซตด้วยตัวแปรแล้วกำหนดเงื่อนไขเกี่ยวกับตัวแปรนั้น เพื่อแสดงว่ามีสิ่งใดบ้างที่เป็นสมาชิกของเซต
วิธีเขียนเซตโดยวิธีนี้ คือ เขียนตัวแปรและสิ่งที่กำหนดเงื่อนไขเกี่ยวกับตัวแปรลงในวงเล็บปีกกาและคั้นตัวแปรกับสิ่งที่กำหนดเงื่อนไขเกี่ยวกับตัวแปรด้วยเครื่องหมาย “|” หรือ “:”
                                                 

 3. การเขียนเซตด้วยวิธีอื่นๆ เช่น แบบบรรยาย, แบบใช้แผนภาพเวนน์, แบบช่วง เป็นต้น อ่านเพิ่มเติม

วันอังคารที่ 12 มกราคม พ.ศ. 2559

โดเมนและเรนจ์

เรื่อง โดเมนและเรนจ์ของฟังก์ชัน
การหาโดเมนและเรนจ์ของฟังก์ชัน สามารถหาได้โดยนิยามของโดเมนและเรนจ์ของฟังก์ชัน และ
การพิจารณาค่าของตัวแปร x กับตัวแปร y ในฟังก์ชัน
บทนิยาม โดเมนของฟังก์ชันคือ เซตของสมาชิกตัวหน้าในคู่อันดับของฟังก์ชัน f เขียนแทนด้วย Df
เรนจ์ของฟังก์ชันคือ เซตของสมาชิกตัวหลังในคู่อันดับของฟังก์ชัน f เขียนแทนด้วย Rf
ตัวอย่างที่ 1 กา หนด f = {(2, 7), (4, 9), (6, 11), (8, 13)} จงหาโดเมนและเรนจ์ของฟังก์ชัน f
วิธีทา จาก f = {(2, 7), (4, 9), (6, 11), (8, 13)}
จะได้ Df = {2, 4, 6, 8}